§ Riemannian metrics

Def: A Riemannian metric on M^{n}, denoted by $g o r\langle$,$\rangle ,$ (pos.defindle) is an association of an inner product g_{p} or \langle,\rangle_{p} defined on $T_{p} M$ depending "smoothly" on $p \in M$.

Picture:

Locally , in word. $X^{\prime}, \ldots, x^{n}$ on M.
$g=\left(g_{i j}\right)$ sim. pos.definate non matrices (of $f(n)$
where $g_{i j}\left(x^{\prime} \ldots, x^{\prime}\right)=g_{\left(x^{\prime}, \ldots x^{-}\right)}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)$ depends smoothly on ($x_{1}^{1} \ldots, x^{n}$)

Equivalently, g is a symmetric $(0,2)$-tensor on M which is pos. defile at every point on M.

Def: $\left(M^{n}, g\right)$ Riemannion manifold
Def!: A smooth map $f:(M, g) \rightarrow(N, h)$ betwan Riem. manifolds
is (i) an isometry if $f: M \rightarrow N$ is a diffeomorphism

$$
\text { s.t. } \left.\quad f^{*} h=g \quad \text { (i.e. } g_{p}(u, v)=h_{f(p)}\left(d f_{p}(u), d f_{p}(v)\right)\right)
$$

(ii) a local isometry at p if \exists abd u of p st. $f: u \rightarrow f(u)$ is an isometry

Examples: 1) $\mathbb{R}^{n}, g_{\text {Encl }}=\sum_{i=1}^{n} d x^{i} \odot d x^{i}$
2) Isometric Immersions: $f: M \longrightarrow(N, h)$ immersion.
$\Rightarrow f^{*} h$ is a Rem. metric on M
(Why? $\left.\quad\left(f^{*} h\right)_{p}(u, v):=h_{f(p)}\left(\underset{1-1}{\left(\underset{f_{p}}{ }(u)\right.}, \underset{1-1}{\underset{=}{d}}(v)\right)\right)$
In particular. $M \subset N$, then $l: M \hookrightarrow N$ inclusion map. h Rem metric on $\left.N \Rightarrow h\right|_{M}:=l^{*} h$ induced metic on M.
E.g.) $S^{n} \subseteq\left(\left.\mathbb{R}^{n+1} \cdot g_{\text {Encl. })} \Rightarrow g_{E_{\text {enol. }}}\right|_{\mathbb{S}^{n}}=: g_{\text {round }}\right.$
3) Product metric: (M.g), (Nih) Rem mfd \leadsto ($M \times N, g \oplus h$) product Riem. $m f a$.
locally. $\quad(g \oplus h)_{i j}=\left(\begin{array}{c|c}g_{i j} & O \\ \hline O & h_{i j}\end{array}\right)$

Es.) Consider $S^{\prime} \subseteq\left(\mathbb{R}^{2}, g_{\text {Ene. }}\right)$
$\leadsto T^{n}:=\underbrace{S^{\prime} \times \cdots \times S^{\prime}}_{n \text {-times }} \quad$ flat n-tones
Prop: Every smooth manifold M^{n} admits a Riem. metric.
"Sketch of Proof": $\left\{\left(u_{i}, \phi_{i}\right)\right\}$ atlas, w. P.o.u. \{pi\}

$$
\text { define: } \quad g==\sum_{i \in I} \underbrace{\rho_{i}\left(\sum_{j=1}^{n} d x^{j} \otimes d x^{j}\right)}_{\text {pos definite }}
$$

Remark: Every oriented (Mig) has a preferred volume form

$$
W=d V_{g} \stackrel{\text { loo. }}{=} \underbrace{\sqrt{\operatorname{det}\left(g_{i j}\right)} d x^{\prime} \wedge \ldots \wedge d x^{n}}_{\begin{array}{c}
\text { invar. under } \\
\text { change of coors. }
\end{array}}
$$

Remark: Let $C:[a, b] \rightarrow M$ smooth cure.
Define Length $(c)=\int_{a}^{b} \sqrt{g_{c(t)}\left(c^{\prime}(t), c^{\prime}(t)\right)} d t$
\oint Connections
$Q:$ How do we differentiate $f \in C^{\infty}(M)$?
A: $f \in C^{\infty}(M) \leadsto \underbrace{X(f) \text { or } d f(X) \text { or } d_{x} f}_{\text {the same! }}$
Q: How do we differentiate vector fields $Y \in P(T M)$?
A1: Lie derivative $\mathcal{L X Y}=[X, Y]$
 differentiate Y along C ?
($L_{X} Y$ YIp) depends on the values of X and Y in a niobe. of P

Reason: $\mathcal{L}_{X} Y$ is Not tonsorial in X.

$$
\mathcal{L}_{f x} Y \neq f \mathcal{L}_{X} Y
$$

A2: "Covariant derivative" $\nabla_{X} Y$ needs an extra stricture of a "connection".

Def': An affine connection on M is a map

$$
\begin{aligned}
\nabla: P(T M) \times P(T M) & \longrightarrow P(T M) \\
(X, Y) & \longmapsto \nabla_{X} Y
\end{aligned}
$$

St. (i) $\boldsymbol{\nabla}$ is bilinear over \mathbb{R}
(ii) $\nabla_{f x} Y=f \nabla_{x} Y \quad \forall f \in C^{\infty}(M)$
(iii) $\nabla_{X}(f Y)=X(f) Y+f \nabla_{X} Y \quad \forall f \in C^{(0}(M)$

One can use ∇ to define a covariant derivative as follows:

$C(t): I \rightarrow M$ curve
$V(t): I \rightarrow T M$ vector field along C.
ie $V(t) \in T_{c(t)} M$
Def?: $\underline{D V}:=\nabla \vee \quad \because \nabla$ is tonsorial in X-verite
\Rightarrow well-definedrass.
covariant
dendrite along C.

$$
\text { of } V \operatorname{alog} C
$$

Lemma: $\nabla_{X} Y(p)$ depends only on $X(p)$ and the values of Y along ANY cure tangent to X at P.

Proof: Locally in coordinates.

$$
X=\sum_{i} a_{i} \frac{\partial}{\partial x^{i}} ; \quad Y=\sum_{j} b_{j} \frac{\partial}{\partial x^{j}}
$$

$$
\begin{aligned}
& \nabla_{X} Y=\nabla_{\sum_{i} a_{i} \frac{\partial}{\partial x^{i}}}\left(\sum_{j} b_{j} \frac{\partial}{\partial x^{j}}\right) \stackrel{(i)}{=} \sum_{(i i)} a_{i} \nabla_{\frac{2}{\partial x^{i}}}\left(\sum_{j} b_{j} \frac{\partial}{\partial x^{j}}\right) \\
& \quad \stackrel{(i)}{=} \sum_{i, j} a_{i} \nabla_{\frac{\partial}{\partial x^{i}}}\left(b_{j} \frac{\partial}{\partial x^{j}}\right) \stackrel{\text { (iii) }}{=} \sum_{i, j} a_{i} \frac{\partial b_{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}+\sum_{i, j} a_{i} b_{j} \nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}
\end{aligned}
$$

Write $\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}=\sum_{k} T_{i j}^{k} \frac{\partial}{\partial x^{k}}$, where $T_{i j}^{k}=\begin{gathered}\text { Christoffel symbols } \\ \text { of } \nabla\end{gathered}$

$$
\begin{aligned}
& \nabla_{X} Y=\sum_{k} X\left(b_{k}\right) \frac{\partial}{\partial x^{k}}+\sum_{i, j, k} T_{i j}^{k} a_{i} b_{j} \frac{\partial}{\partial x^{k}} \\
& =\sum_{k}[\underbrace{\underbrace{X\left(b_{k}\right)}_{\text {depends only }}}_{\begin{array}{c}
\text { depends only on } \\
X(p) \text { and }
\end{array}}+\sum_{i, j} \underbrace{\Gamma_{i j}^{k} a_{i} b_{j}}_{\text {on } X(p), Y(p)}] \frac{\partial}{\partial x^{k}} \\
& Y \approx b_{k} \text { along a cone } c
\end{aligned}
$$

This Lemma provides a way to define the notion of cure $C(t)$ on M :

where Y is any smosth (local) extern sion of V

Prop: (1) $\frac{D}{d t}(v+w)=\frac{D V}{d t}+\frac{D W}{d t}$
$v, w \in T(T M)$.
(2) $\frac{D}{d t}(f V)=\frac{d f}{d t} V+f \frac{D V}{d t} \quad \forall f \in C^{\infty}(M)$

Prof: Follows from (i) - (iii) of $\boldsymbol{\nabla}$.

Deft: A vector field V along a curve C is parallel if $\frac{D V}{d t} \equiv 0$

Locally, write $V=\sum_{i} a_{i} \frac{\partial}{\partial x^{i}}$

$$
C(t)=\left(C_{1}(t), \ldots, C_{n}(t)\right) ; \quad C^{\prime}(t)=\sum_{j} C_{j}^{\prime}(t) \frac{\partial}{\partial x^{j}}
$$

So. V is parallel of

$$
\begin{aligned}
0 \equiv \frac{D V}{d t} & =\nabla_{c^{\prime}(t)} V=\nabla_{\sum_{j} c_{j}^{\prime} \frac{\partial}{\partial x^{j}}}\left(\sum_{i} a_{i} \frac{\partial}{\partial x^{i}}\right) \\
\Rightarrow \quad 0 & \equiv \sum_{k}\left(\frac{d a_{k s}}{d t}+\sum_{i, j} \Gamma_{i j}^{k} c_{j}^{\prime} a_{i}\right) \frac{\partial}{\partial x^{k}}
\end{aligned}
$$

ie. $\frac{d a_{k}}{d t}(t)+\sum_{i, j=1}^{n} T_{i j}^{k}(c(t)) c_{j}^{\prime}(t) a_{i}(t)=0, \forall k=1, \ldots, n$
$1^{\text {st }}$ order linear $O D E$ system.
\Rightarrow Longtime existence $\&$ uniqueness given any initial data $a_{i}(0)$

In other words, if $C:[0,1] \rightarrow M$ is a smooth cure dorking $p=c(0)$ to $q=c(1)$. Given any $V_{0} \in T_{p} M, \exists$! parallel v.f $V(t)$
 along c st $V(0)=V_{0}$
The map $P: T_{p} M \rightarrow T_{q} M$
$V_{0} \longmapsto V^{\circ}(1)$
is called parallel transport from p to o along C
Ex: P is a linear isomorphism.
Fact: On the same manifold M. the space of affine connections defined on M forms an affine space, ie

$$
\text { Conn. (M) : }=\left\{\begin{array}{c}
\substack{\text { affine } \\
\text { connections } \\
\text { on }}
\end{array}\right\}=T_{0}+\underbrace{\boldsymbol{W}}_{\substack{\text { vector } \\
\text { space }}}
$$

Motto: For a Riemannion manifold (M,g), there is a "canonical" connection called Riemannien / Levi-Civita connection .

Fundamental The. for Riemannion Geometry
Given a Riem.mfd $\left(M^{n}, g\right), \exists$! connection ∇ s.t. $\forall x, y, Z \in P(T M)$
(1) "Metric compatible" ($\nabla g \equiv 0$ ")

$$
X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

(2) "Torsio n-free"

$$
\nabla_{X} Y-\nabla_{Y} X=\overbrace{[X, Y]}^{\text {smooth stmocture }}
$$

Proof: Suppose such a connection ∇ exists.
(1) implies:

$$
\begin{aligned}
& X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) \\
&+Y(g(Z, X))=g\left(\nabla_{Y} Z, X\right)+g\left(Z, \nabla_{Y} X\right) \\
& \frac{-Z(g(X, Y))}{}=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z} Y\right) \\
& \text { R.H.S. }=g([X, Z], Y)+g([Y, Z], X)+g([X, Y], Z)+2 g\left(\nabla_{Y} X, Z\right)
\end{aligned}
$$

Rearranging gives Kozsul formula:

$$
g\left(\nabla_{Y} X, Z\right)=\frac{1}{2}\left\{\begin{array}{l}
X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y)) \\
-g([X, Z], Y)-g([Y, Z], X)-g([X, Y], Z)
\end{array}\right\}
$$

This shows ∇ exists and is unique!
In local cooed., $\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}=\sum_{k} T_{i j}^{k} \frac{\partial}{\partial x^{k}}$ where

$$
T_{i j}^{k}=\frac{1}{2} g^{k \ell}\left(\partial_{i} g_{j k}+\partial_{j} g_{k i}-\partial_{k} g_{i j}\right)
$$

Remarks: - torsron-free $\Leftrightarrow T_{i j}^{k}=T_{j i}^{k}$
Why? $\underbrace{\nabla_{\partial_{i}} \partial_{j}}-\underbrace{\nabla_{\partial_{j}} \partial_{i}}=\left[\partial_{i}, \partial_{j}\right]=0$

- For covariant dernectioes along a curve:

$$
\frac{d}{d t}(g(v, w))=g\left(\frac{D V}{d t}, w\right)+g\left(v, \frac{D w}{d t}\right)
$$

In particular, if V, W are parallel, then $S(V, W) \equiv$ constr. along C
So. V parallel $\Rightarrow\|V\|^{2}:=g(V, V) \equiv$ constr.

FROM NOW ON, We ASSUME
$\left(M^{n}, g\right)$ equipped with ∇
Riem mfd
Rim connection

